吡啶联苯氨基脲衍生物的合成及抗肿瘤活性研究

胡鸿雨, 张伟东, 吴佳飞, 张鑫伟, 盛含晶, 赵胜贤

中国药学杂志 ›› 2019, Vol. 54 ›› Issue (12) : 947-952.

PDF(1384 KB)
PDF(1384 KB)
中国药学杂志 ›› 2019, Vol. 54 ›› Issue (12) : 947-952. DOI: 10.11669/cpj.2019.12.003
论著

吡啶联苯氨基脲衍生物的合成及抗肿瘤活性研究

  • 胡鸿雨1, 张伟东2, 吴佳飞1, 张鑫伟1, 盛含晶1, 赵胜贤1,3*
作者信息 +

Synthesis and Antitumor Activities of Phenylpyridine Substituted Semicarbazides

  • HU Hong-yu1, ZHANG Wei-dong2, WU Jia-fei1, ZHANG Xin-wei1, SHENG Han-jing1, ZHAO Sheng-xian1,3*
Author information +
文章历史 +

摘要

目的 设计合成吡啶联苯氨基脲衍生物,并对其体外抗肿瘤活性进行研究。方法 以苯乙酮为起始原料,经缩合、环化、肼解及与异氰酸酯的反应,合成了目标化合物,采用溴化噻唑蓝四氮唑(MTT)法研究了目标化合物对人肝癌细胞(QGY-7703)、人肺癌细胞(NCl-H460)和乳腺癌细胞(MCF-7)的体外抗肿瘤活性。结果 合成了16个新化合物,其结构经1H-NMR,13C-NMR 和HRMS表征。体外生物活性测试结果显示,大多数化合物具有一定的体外抗肿瘤活性,其中化合物5l活性最优,其对QGY-7703、NCl-H460和MCF-7细胞的半数抑制浓度(IC50)分别为9.15、10.45和12.50 μmol·L-1结论 该系列化合物具有较好的抗肿瘤活性,具有进一步研究的意义。

Abstract

OBJECTIVE To design and synthesize phenylpyridine substituted semicarbazides and investigate their in vitro antitumor activities. METHODS The target compounds were synthesized from acetophenone through condensation, cyclization,hydrazinolysis and reaction with isocyanates. The synthesized compounds were screened for their anticancer potential against different cancer cells viz human hepatocelular carcinoma (QGY-7703), non-small cell lung (NCl-H460) and human breast (MCF-7) cancer cell lines by MTT assay. RESULTS Sixteen novel compounds were obtained, and their structures were characterized by 1H-NMR, 13C-NMR and HRMS. In vitro bioassay indicated that most compounds had a certain degree of antitumor activity. Compound 51 displayed the most potential anticancer activity against these cancer cell lines with IC50 value of 9.15, 10.45 and 12.50 μmol·L-1, respectively. CONCLUSION The series of compounds show preferable antitumor activities, which are worthy of further study.

关键词

氨基脲衍生物 / 吡啶联苯 / 抗肿瘤活性

Key words

semicarbazide / phenylpyridine / antitumor activity

引用本文

导出引用
胡鸿雨, 张伟东, 吴佳飞, 张鑫伟, 盛含晶, 赵胜贤. 吡啶联苯氨基脲衍生物的合成及抗肿瘤活性研究[J]. 中国药学杂志, 2019, 54(12): 947-952 https://doi.org/10.11669/cpj.2019.12.003
HU Hong-yu, ZHANG Wei-dong, WU Jia-fei, ZHANG Xin-wei, SHENG Han-jing, ZHAO Sheng-xian. Synthesis and Antitumor Activities of Phenylpyridine Substituted Semicarbazides[J]. Chinese Pharmaceutical Journal, 2019, 54(12): 947-952 https://doi.org/10.11669/cpj.2019.12.003
中图分类号: R914   

参考文献

[1] World Health Organization. Cancer[EB/OL]. 2018-09-12.https://www.who.int/en/news-room/fact-sheets/detail/cancer.
[2] DICKENS E, AHMED S. Principles of cancer treatment by chemotherapy[J]. Surgery (Oxford), 2018, 36 (3):134-138.
[3] LIU X C, CHENG Y F, LI D A. Anti-Tumor Resistance Mechanisms.Practical Antitumor Drug Treatment[M]. Practical Therapy of Antitumor Drug (实用抗肿瘤药物治疗学). Beijing:People′s Medical Publishing House, 2002:171-181.
[4] HOPKINS A L. Network pharmacology:the next paradigm in drug discovery [J]. Nat Chem Biol, 2008, 4 (11):682-690.
[5] VIEGAS-JUNIOR C, DANUELLO A, BOLZANI V, et al. Molecular hybridization:a useful tool in the design of new drug prototypes [J].Current Med Chem, 2007, 14 (17):1829-1852.
[6] FORTIN S, BERUBE G. Advances in the development of hybrid anticancer drugs [J]. Expert Opin Drug Dis, 2013, 8 (8):1029-1047.
[7] SENKARDES S, KAUSHIK-BASU N, DURMAZ I, et al. Synthesis of novel diflunisalhydrazide-hydrazones as anti-hepatitis C virus agents and hepatocellular carcinoma inhibitors[J]. Eur J Med Chem, 2016, 108:301-308.
[8] MUKHERJEE D D, KUMAR N M, TANTAK M P, et al. Development of novel bis(indolyl)-hydrazide-hydrazone derivatives as potent microtubule-targeting cytotoxic agents against A549 lung cancer cells [J]. Biochemistry, 2016, 55 (21):3020-3025.
[9] PARK E B, KIM K J, JEONG H R, et al. Synthesis, structure determination, and biological evaluation of phenylsulfonyl hydrazide derivatives as potential anti-inflammatory agents [J]. Bioorg Med Chem Lett, 2016, 26 (21):5193-5197.
[10] GUO B, FAN H X, XIN Q S, et al. Solubility-driven optimization of (pyridin-3-yl) benzoxazinyl-oxazolidinone sleading to a promising antibacterial agent [J]. J Med Chem, 2013, 56 (6):2642-2650.
[11] GRIGOR′EV A A, SHTYRLIN N V, GABBASOVA R R, et al. Synthesis, antibacterial and antitumor activity of methylpyridinium salts of pyridoxine functionalized 2-amino-6-sulfanylpyridine-3,5-dicarbonitriles[J]. Synthetic Commun, 2018, 48 (17):2288-2304.
[12] YU X L, ZHENG Z C, MEI L Y, et al. Synthesis technology of dexlansoprazole [J].Drugs Clin(现代药物与临床), 2013, 28 (5):661-664.
[13] YANG H L, XU G X, BAO M Y, et al. Design and synthesis of pyridinylisoxazoles and their anticancer activities [J]. Chem J Chin Univ(高等学校化学学报), 2014, 35 (12):2584-2592.
[14] KUMAR R N, REDDY G M, NAGENDAR P, et al. Synthesis of novel pyrido[3′,2′:4,5]furo[3,2-d]pyrimidine derivatives and their cytotoxic activity [J]. J Heterocyclic Chem, 2014, 51 (5):1531-1535.
[15] ZhOU H, DUAN Z G, ZHAO S, et al. Design and synthesis of phenylpyrimidine and their anticancer activity [J]. Chem J Chin Univ(高等学校化学学报), 2015, 36 (9):1694-1701.
[16] KANTEVARI S, CHARY M V, VUPPALAPATI S. A highly efficient regioselective one-pot synthesis of 2,3,6-trisubstituted pyridines and 2,7,7-trisubstituted tetrahydroquinolin-5-ones using K5CoW12O40·3H2O as a heterogeneous recyclable catalyst [J]. Tetrahedron, 2007, 63 (52):13024-13031.
[17] ABDEL-AZIZ H A, ABOUL-FADL T, AL-OBAID A, et al. Design, synthesis and pharmacophoric model building of novel substituted nicotinic acid hydrazones with potential antiproliferative activity [J]. Arch Pharm Res, 2012, 35 (9):1543-1552.
[18] QI B H,YANG Y, HE H, et al. Design, synthesis and antitumor activities of c-Met inhibitors possessing thiazolinone scaffolds [J]. Chin Pharm J (中国药学杂志), 2018,53 (15):1255-1264.
[19] JIA J J, GUO Z Y, LING Y H, et al. Synthesis and anti tumoractivities of quercetin and its derivates [J].Chin Pharm J (中国药学杂志),2016,51(23):2013-2017.

基金

国家级大学生创新创业训练计划项目资助(201813276001)

PDF(1384 KB)

Accesses

Citation

Detail

段落导航
相关文章

/